If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+36X+99=0
a = 1; b = 36; c = +99;
Δ = b2-4ac
Δ = 362-4·1·99
Δ = 900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{900}=30$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-30}{2*1}=\frac{-66}{2} =-33 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+30}{2*1}=\frac{-6}{2} =-3 $
| 6b^2+8b+3=0 | | -3c=-4c-10 | | -1+x=11 | | X+x/2=450 | | -10k=-7k+9 | | 10(2y+2)-y=2(8-8) | | 5*3*2^(3x-1)=-16 | | -2y+6(y+7)=34 | | Z^2-22z+121=0 | | -17=-7+x | | -(a-2)-(3a+4)=-2a | | 8x^2-104x+335=0 | | x+x-1+x+1=702 | | 2(2x-1)-3(x-5)=18 | | 2y+6(y+7)=34 | | 11x-(7x-2)=14 | | 1/2x-6=1/4x+2 | | X²=15-2x | | 47+w=91 | | 96=7x+22 | | 3(2x–7)=5–(1–x) | | -2(x+6)=3x-2 | | -3(4w-9)9w=6(w+5) | | 4(x+2)=4(-x+2) | | 16y+3y^2=35 | | 5=1/5a | | 16y+3y2=35 | | (x-8)(x+2)=24 | | -2|7-3x|-6=-14 | | X=5(180-x) | | 2x(x-2)=9x^2-8x | | (X)-(x/5)=144 |